18 research outputs found

    Local Lagrangian Formalism and Discretization of the Heisenberg Magnet Model

    Full text link
    In this paper we develop the Lagrangian and multisymplectic structures of the Heisenberg magnet (HM) model which are then used as the basis for geometric discretizations of HM. Despite a topological obstruction to the existence of a global Lagrangian density, a local variational formulation allows one to derive local conservation laws using a version of N\"other's theorem from the formal variational calculus of Gelfand-Dikii. Using the local Lagrangian form we extend the method of Marsden, Patrick and Schkoller to derive local multisymplectic discretizations directly from the variational principle. We employ a version of the finite element method to discretize the space of sections of the trivial magnetic spin bundle N=MĂ—S2N = M\times S^2 over an appropriate space-time MM. Since sections do not form a vector space, the usual FEM bases can be used only locally with coordinate transformations intervening on element boundaries, and conservation properties are guaranteed only within an element. We discuss possible ways of circumventing this problem, including the use of a local version of the method of characteristics, non-polynomial FEM bases and Lie-group discretization methods.Comment: 12 pages, accepted Math. and Comp. Simul., May 200

    A Kinetic Model for Semidilute Bacterial Suspensions

    Get PDF
    Suspensions of self-propelled microscopic particles, such as swimming bacteria, exhibit collective motion leading to remarkable experimentally observable macroscopic properties. Rigorous mathematical analysis of this emergent behavior can provide significant insight into the mechanisms behind these experimental observations; however, there are many theoretical questions remaining unanswered. In this paper, we study a coupled PDE/ODE system first introduced in the physics literature and used to investigate numerically the effective viscosity of a bacterial suspension. We then examine the kinetic theory associated with the coupled system, which is designed to capture the long-time behavior of a Stokesian suspension of point force dipoles (infinitesimal spheroids representing self-propelled particles) with Lennard-Jones--type repulsion. A planar shear background flow is imposed on the suspension through the novel use of Lees--Edwards quasi-periodic boundary conditions applied to a representative volume. We show the existence and uniqueness of solutions for all time to the equations of motion for particle configurations---dipole orientations and relative positions. This result follows from first establishing the regularity of the solution to the fluid equations. The existence and uniqueness result allows us to define the Liouville equation for the probability density of configurations. We show that this probability density defines the average bulk stress in the suspension underlying the definition of many macroscopic quantities of interest, in particular the effective viscosity. These effective properties are determined by microscopic interactions highlighting the multiscale nature of this work

    A Kinetic Model for Semidilute Bacterial Suspensions

    Get PDF
    Suspensions of self-propelled microscopic particles, such as swimming bacteria, exhibit collective motion leading to remarkable experimentally observable macroscopic properties. Rigorous mathematical analysis of this emergent behavior can provide significant insight into the mechanisms behind these experimental observations; however, there are many theoretical questions remaining unanswered. In this paper, we study a coupled PDE/ODE system first introduced in the physics literature and used to investigate numerically the effective viscosity of a bacterial suspension. We then examine the kinetic theory associated with the coupled system, which is designed to capture the long-time behavior of a Stokesian suspension of point force dipoles (infinitesimal spheroids representing self-propelled particles) with Lennard-Jones--type repulsion. A planar shear background flow is imposed on the suspension through the novel use of Lees--Edwards quasi-periodic boundary conditions applied to a representative volume. We show the existence and uniqueness of solutions for all time to the equations of motion for particle configurations---dipole orientations and relative positions. This result follows from first establishing the regularity of the solution to the fluid equations. The existence and uniqueness result allows us to define the Liouville equation for the probability density of configurations. We show that this probability density defines the average bulk stress in the suspension underlying the definition of many macroscopic quantities of interest, in particular the effective viscosity. These effective properties are determined by microscopic interactions highlighting the multiscale nature of this work

    Effective Viscosity of Dilute Bacterial Suspensions: A Two-Dimensional Model

    Full text link
    Suspensions of self-propelled particles are studied in the framework of two-dimensional (2D) Stokesean hydrodynamics. A formula is obtained for the effective viscosity of such suspensions in the limit of small concentrations. This formula includes the two terms that are found in the 2D version of Einstein's classical result for passive suspensions. To this, the main result of the paper is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the active suspension. This term explains the experimental observation of a decrease in effective viscosity in active suspensions.Comment: 15 pages, 3 figures, submitted to Physical Biolog

    Motor-Driven Bacterial Flagella and Buckling Instabilities

    Get PDF
    Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff's elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torque. We present a sophisticated analytical model for the buckling transition based on a helical rod which quantitatively reproduces the critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of pulling flagella along the driving torque is not stable and comment on the biological relevance for marine bacteria.Comment: 15 pages, 11 figure

    Local Lagrangian Formalism And Discretization Of The Heisenberg Magnet Model

    No full text
    In this paper we develop the Lagrangian and multisymplectic structures of the Heisenberg magnet (HM) model which are then used as the basis for geometric discretizations of HM. Despite a topological obstruction to the existence of a global Lagrangian density, a local variational formulation allows one to derive local conservation laws using a version of Nöther\u27s theorem from the formal variational calculus of Gelfand-Dikii. Using the local Lagrangian form we extend the method of Marsden, Patrick and Schkoller to derive local multisymplectic discretizations directly from the variational principle. We employ a version of the finite element method to discretize the space of sections of the trivial magnetic spin bundle N=M×S2 over an appropriate space-time M. Since sections do not form a vector space, the usual FEM bases can be used only locally with coordinate transformations intervening on element boundaries, and conservation properties are guaranteed only within an element. We discuss possible ways of circumventing this problem, including the use of a local version of the method of characteristics, non-polynomial FEM bases and Lie-group discretization methods. © 2005 IMACS. Published by Elsevier B.V. All rights reserved

    Patterns and intrinsic fluctuations in semi-dilute motor-filament systems

    No full text
    We perform Brownian dynamics simulations of molecular motor-induced ordering and structure formations in semi-dilute cytoskeletal filament solutions. In contrast to the previously studied dilute case where binary filament interactions prevail, the semi-dilute regime is characterized by multiple motor-mediated interactions. Moreover, the forces and torques exerted by motors on filaments are intrinsically fluctuating quantities. We incorporate the influences of thermal and motor fluctuations into our model as additive and multiplicative noises, respectively. Numerical simulations reveal that filament bundles and vortices emerge from a disordered initial state. Subsequent analysis of motor noise effects reveals: i) Pattern formation is very robust against fluctuations in motor force; ii) bundle formation is associated with a significant reduction of the motor fluctuation contributions; iii) the time scale of vortex formation and coalescence decreases with increases in motor noise amplitude

    Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions

    No full text
    We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important

    A Kinetic Model for Semidilute Bacterial Suspensions

    No full text
    corecore